A Temperature Window for Chemical Vapor Decomposition Growth of Single-Wall Carbon Nanotubes
نویسندگان
چکیده
Carbon single-wall nanotubes (SWNTs) grow efficiently from methane on alumina-supported metal catalysts within a fairly narrow temperature window from 680 to 850 °C. An abrupt onset in SWNT growth occurs at the low temperature side of the window, and SWNTs produced at these lower temperatures appear to be relatively free of amorphous or nanocrystalline carbon impurities. Raman spectroscopy shows that SWNT yield drops dramatically at the high-temperature side of the window where most previous chemical vapor decomposition (CVD) studies have been performed. The turn-on at the low-temperature side appears to be controlled by the thermodynamics of SWNT growth, while the turn-off at high temperatures is associated with competitive deposition of amorphous and nanocrystalline carbon. The existence of a temperature window for SWNT growth has not been reported elsewhere, and has important general consequences for CVD growth of SWNTs.
منابع مشابه
A Temperature Window for the Synthesis of Single-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition of CH4over Mo2-Fe10/MgO Catalyst
A temperature window of single-walled carbon nanotubes (SWCNTs) growth has been studied by Raman spectroscopy. The results presented when temperature lower than 750 degrees C, there were few SWCNTs formed, and when temperature higher than 900 degrees C, mass amorphous carbons were formed in the SWCNTs bundles due to the self-decomposition of CH4. The temperature window of SWCNTs efficiently gro...
متن کاملThe Impact of Cadmium Loading In Fe/Alumina Catalysts and Synthesis Temperature on Carbon Nanotubes Growth by Chemical Vapor Deposition Method
We evaluated the effect of Fe/Alumina Catalyst contained different Cadmium contents and two synthesis temperatures on producing carbon nanotubes by chemical vapor deposition of methane as a feedstock. X-ray powder diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and Thermogravimetry analysis (TGA) were u...
متن کاملTemplated Growth of Carbon Nanotubes on Nickel Loaded Mesoporous MCM-41 and MCM-48 Molecular Sieves
Chemical vapor deposition was employed to synthesize carbon nanotubes with Ni-loaded MCM-41 and MCM-48 as catalysts and acetylene as precursor at 750°C. Mesoporous Ni MCM-41 and Ni MCM-48 molecular sieves were synthesized by a hydrothermal method and were characterized by XRD and N2 adsorption isotherm. The catalytically synthesized carbon materials were characterized with Raman spectroscopy, N...
متن کاملA PARAMETRIC STUDY ON THE GROWTH OF SINGLE-WALLED CARBON NANOTUBES OVER CO-MO/MGO NANOCATALYST IN A FLUIDIZED BED REACTOR BY CCVD METHOD
Single-walled carbon nanotubes (SWNTs) with high yield and quality were synthesized using chemical vapor deposition (CVD) over Co-Mo/ MgO nanocatalyst in a fluidized bed reactor. Different parameters such as temperature, the ratio of hydrocarbon source to hydrogen, the flow rate of gas, growth time, the size of catalyst particles, heating rate, and the kind of hydrocarbon source were examined t...
متن کاملGrowth of catalyst-assisted and catalyst-free horizontally aligned single wall carbon nanotubes
Here, we report the growth of homogenously horizontally aligned single wall carbon nanotubes on stable temperature cut single crystal quartz using chemical vapor deposition with controllable yield and length from binary metallic mixtures as well as fullerene derivatives. We manage the yield and length of the as-grown tubes on stable temperature cut single crystal quartz by controlling the surfa...
متن کامل